

Wavelength Meter

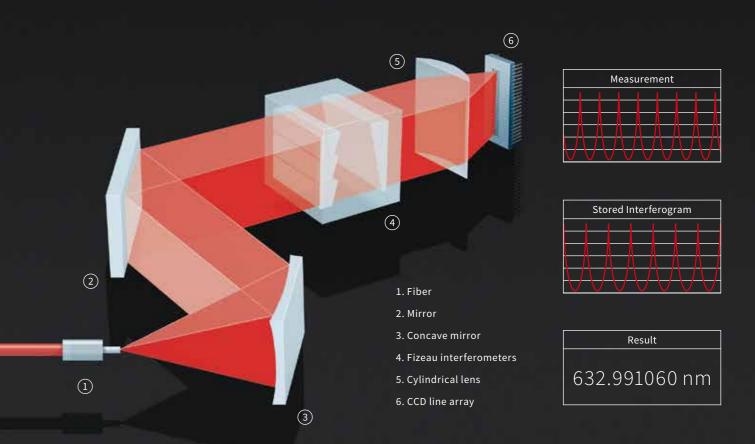
Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers.

Unrivaled precision

The sturdiness of our design has been proven even under extreme conditions such as freefall dropping experiments or in air-borne applications (LIDAR). The absence of movable parts ensures our most valued advantages, e.g. high-speed measurements of pulsed and continuous lasers.

Picture courtesy:DLR Institute ofAtmospheric Physics

The HighFinesse/Ångstrom wavelength meters are the unsurpassed high-end instruments for wavelength measurement of pulsed or continuous laser sources. They deliver the superb absolute and relative accuracy required by cutting-edge scientific research, as well as industrial and medical applications. The unmatched precision of the WS8 series and all of our other wavemeters is achieved by using non-moving, temperature controlled Fizeau-interferometers in a unique geometric configuration.


The wavelength meters are connected to the PC via a USB interface and are ready for use as soon as the software delivered with the device is installed. A compact, thermally insulated housing holds the optical elements as well as the electronics. The design enables the integration of additional options, allowing customized solutions to specific applications even years after purchase.

Enter a new world of accuracy!

Fizeau based interferometers

The optical unit consists of Fizeau-based interferometers which are read out by photodiode arrays. We achieve remarkable high accuracy and stability by using exclusive, non-moving optics.

The light is coupled into the device via a fiber and then collimated by a mirror, before entering the solid-state Fizeau-interferometers. The interference pattern is imaged by a cylindrical lens onto CCD photodiode arrays. This recorded pattern is transferred to your computer via a high-speed USB connection which allows data acquisition rates of up to 50 kHz.

The software fits and compares the pattern to a previously recorded calibration to calculate the wavelength. One significant advantage of our Fizeau-based wavelength meters,

compared with other available instruments, is the absence of mechanical moving parts. This ensures the high reliability of accuracies up to 2 MHz (absolute) and ensures the outstanding robustness HighFinesse wavelength meters are noted for. The design enables the precise measurement of not only continuous lasers, but also pulsed laser sources, which broadens the application range even further.

Another key benefit is the simplicity of our wavelength meters. Simply connect the USB cable and run the program supplied. That's all it takes! PCF switch Productoverview

Up until now our multichannel switches have always been limited in either the wavelength range for single mode switches, or accuracy for multimode switches. Our new PCF switches solve this problem. Using endlessly single mode photonic-crystal-fibers (PCF) allows us to produce a switch that offers single mode operation for all wavelengths. Using the PCF switch it is possible to switch between light-sources at any wavelength within the device's measurement range and maintain the full accuracy. Combining the PCF switch with other options such as PID control opens new possibilities.

Sold exclusively with the WS8 the PCF switches are available in two-channel (standard), four-channel, and eight-channel configurations.

The HighFinesse/Ångstrom WS8 and PCF switch: enter a new world of accuracy!

Technical Data		
	Standard (330 – 1180 nm)	
	UV-I (248 – 1180 nm)	
	UV-II (192 – 800 nm)	
Measurement range	VIS / IR (330 – 1750 nm)	
	VIS / IR-II (500 – 2250 nm)	
	IR-I (630 – 1750 nm)	
	IR-II (1000 – 2250 nm)	
	IR-III (1400 – 11000 nm)	
	192 – 330 nm²)	
	330 – 420 nm	
Absolute accuracy 1)	420 – 1100 nm	
,	1100 – 2250 nm	
	1400 – 11000 nm	
Quick coupling accuracy (with		
	vity/Measurement resolution 6)	
Linewidth option	Accuracy ⁷⁾	
	, we was a cy	
Measurement speed 8)		
	Standard	
	UV-I	
Required input	UV-II	
energy and power ⁹⁾	IR-I	
	IR-II 10)	
	IR-III	
Fizeau interferometers 11)		
Calibration		
Recommended calibration pe	eriod	
Warm-up time		
Dimensions L × W × H		
Weight		
Interface		
Power supply		

²⁾ With multi mode fiber

3 2 3000 2000 3000 1000 2000 950 1: 2000)	0.6 0.3 600 400 - 600 100 500 950 (IR: 2000)	0.4 0.2 200 150 200 600 5) 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5	0.1 0.01 10 ³⁾ - 100 2	0.01 24) - 100 0.5
3 2 3000 2000 3000 3000 1000 2000 950 :: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5	0.1 0.01 10 ³⁾ 10 ³⁾ -	0.01 249 - 100 0.5
3 2 3000 2000 3000 3000 1000 2000 950 :: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5	0.1 0.01 10 ³⁾ 10 ³⁾ -	- 0.01 2 ⁴⁾ - 100 0.5
3 2 3000 2000 3000 3000 1000 2000 950 :: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5	0.1 0.01 10 ³⁾ 10 ³⁾	- 0.01 2 ⁴⁾ - 100
3 2 3000 2000 3000 3000 1000 2000 950 :: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5	0.1 0.01 10 ³⁾ 10 ³⁾ - 100	- 0.01 2 ⁴⁾ - 100
3 2 33000 20000 33000 3000 1000 2000 950 2: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5 100	0.1 0.01 10 ³⁾ 10 ³⁾ - 100	- 0.01 2 ⁴⁾ - 100 0.5
3 2 3000 2000 3000 3000 1000 2000 950 :: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5 100	0.1 0.01 10 ³⁾ 10 ³⁾ - 100 2	- 0.01 2 ⁴⁾ - - 100 0.5
3 2 3000 2000 3000 3000 1000 2000 950 :: 2000)	0.6 0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.2 0.04 60 40 - 150 10 200	0.1 0.02 30 20 - 100 5 100	0.1 0.01 10 ³⁾ 10 ³⁾ - 100	- 0.01 2 ⁴⁾ - - 100 0.5
2 3000 2000 3000 3000 1000 2000 950 1: 2000)	0.3 600 400 - 600 100 500	0.2 200 150 200 600 ⁵⁾ 50 400	0.04 60 40 - 150 10 200	0.02 30 20 - 100 5 100	0.01 10 ³⁾ 10 ³⁾ - 100 2	0.01 2 ⁴⁾ - - 100 0.5
3000 2000 3000 3000 1000 2000 950 :: 2000)	600 400 - 600 100 500	200 150 200 600 ⁵⁾ 50 400	60 40 - 150 10 200	30 20 - 100 5 100	10 ³) 10 °) - 100 2	2 ⁴⁾ 100 0.5
2000 3000 3000 1000 2000 950 1: 2000)	400 - 600 100 500	150 200 600 ⁵⁾ 50 400	40 - 150 10 200	20 - 100 5 100	10 ³⁾ - 100 2	100
3000 3000 1000 2000 950 1: 2000)	- 600 100 500	200 600 ⁵⁾ 50 400	150 10 200	- 100 5 100	100	- 100 0.5
3000 1000 2000 950 1: 2000)	600 100 500	50 400 500	150 10 200	100 5 100	100	0.5
950 2000)	100 500 950	50 400 500	10 200 500	5	2	0.5
950 1: 2000)	500 950	500	200 500	100		
950	950	500	500		100	100
2000)				500		
		(=== = 7)	(IR: 1200)	(IR: 1200)	500 (IR: 1200)	500 (IR: 1200)
02 15						
	0.02 - 15	0.02 - 15	0.02 - 15	0.02 - 15	0.08 - 60	0.08 - 60
02 - 10	0.02 - 10	0.02 - 10	0.02 - 10	0.02 - 10		
2 – 200	0.02 – 200	0.02 - 200	0.01 - 100			
- 200	2 – 200	1 - 100	2 – 200	2 – 200	8 - 800	
2 – 80	2 - 80	2 - 80	2 - 80			
1	-	1				
100	16/100 12)	16/100 13)	8/32	4/32	2/20	2/20
Built-in calibration ¹⁴⁾			Built-in calibration ¹⁵⁾	Stabilized HeNe laser or any other well known laser source Δv < 3 MHz		SLR-780 or any well know laser source Δv < 1 MHz
	≤1 month		≤ 14 days	≤ 10 hours	≤1 hour	≤ 2 minutes
No warm-ı	up time under con	stant ambient con	ditions ¹⁶⁾		> 30 minutes	
120 × 120	360 × 120 × 120	360 × 200 × 120	360 × 200 × 120	360 × 200 × 120	360 × 200 × 120	360 × 200 × 12
2.8	2.8	5.5	5.9	6.1	6.4	6.4
		High-s	peed USB 2.0 conn	ection		
1	1	1	1		$\frac{1}{100}$ $\frac{1}{16/100^{12}}$ $\frac{1}{16/100^{13}}$ $\frac{1}{8/32}$ $\frac{4/32}{4/32}$ Built-in calibration $\frac{14}{14}$ $\frac{1}{16/100^{13}}$ $\frac{1}{16$	$\frac{1}{100}$ $\frac{1}{16/100^{12}}$ $\frac{1}{16/100^{13}}$ $\frac{1}{8/32}$ $\frac{4/32}{4/32}$ $\frac{2/20}{2/20}$ Built-in calibration 14) Built-in calibration 15) Stabilized HeNe laser or any other well known laser source Δv < 3 MHz ≤ 1 month ≤ 14 days ≤ 10 hours > 30 minutes 120 × 120 360 × 120 × 120 360 × 200 × 120 360 × 200 × 120 360 × 200 × 120 360 × 200 × 120 2.8 2.8 2.8 5.5 5.9 6.1 6.4

⁹⁾ The CW power interpretation in [µW] compares to an exposure of 1s (generally the energy needs to be divided by the exposure time to obtain the required power)

^{3) ± 200} nm around calibration wavelength

^{4) ± 2} nm around calibration wavelength

^{5) 200} MHz for WS6-200 IR-III

⁶⁾ Only for standard range

⁷⁾ Not better than 5 % of the linewidth.

⁸⁾ Depending on PC hardware and settings. Highspeed models up to 50 kHz available

¹⁰⁾ μJ interpretation for pulsed lasers. CW signals need more power in [μW] since the exposure is limited at IR-II devices

¹¹⁾ Values for fine/wide-mode 12) For IR devices: 32/32 13) For IR-I and IR-II devices: 16/16, for IR-III devices: 8/80

¹⁴⁾ IR-III: external reference required, e.g. SLR-1532

¹⁵⁾ IR-devices: external calibration source needed, e.g. SLR-1532

¹⁶⁾ IR-II: > 30 min. warm-up, or until ambient equilibrium

Upgrade options expand the capabilities of our wavelength meters to match individual requirements of cutting edge research and measurements.

In order to measure the MC frequencies of more than just one laser at a time, an opto-mechanical switch is used. The combination of our highspeed wavelength meters with one of the quickest fiber switches (MEMS) available allows up to eight channels to be measured almost simultaneously. Exposure time and other parameters can be defined independently for each light source. You can choose between singlemode or multimode fiber switches, depending on the required accuracy level of your measurements.

PID With the PID option it is possible to stabilize the frequency of a laser connected to the wavemeter using a software based proportional-integral-derivative controller (PID controller). Unlike analog PID stabilizations, the PID option provides software based signal processing, allowing the laser to be stabilized to a specific user defined frequency. This makes it extremely useful in experiments where the laser frequency has to be actively regulated

or varied to fit changing experimental conditions, such as laser cooling, atomic detection, trapping and spectroscopy. Combined with the MC option the wavemeter can be used to stabilize multiple lasers simultaneously. The regulation speed and quality and absolute accuracy match the measurement speed, relative accuracy and absolute accuracy of the wavemeter respectively. The measurement speed is not affected by the regulation.

Usually all wavelength meters detect and measure pulsed signals automatically. This option allows the user to trigger pulsed measurements externally. The TTL option guarantees synchronization between pulsed excitation and measurement. It provides low-noise, pollution-free signals when measuring pulsed signals with low duty cycles.

The linewidth estimation of a singlemode laser source is performed by a special algorithm which eliminates the interferometer's instrument response function.

The algorithm enables the estimation of the linewidth several times better than the spectral resolution of the instrument.

The diffraction grating option allows the analysis of emission spectrum to an accuracy

of 6 GHz, for laser sources with broad emission. The software automatically searches the spectral section where the laser emission line is located and displays it on the screen. In combination with the additional Fizeau interferometer array this allows wide range applications with a single device.

Standard HighFinesse wavelength meters up to an absolute accuracy of 60 MHz

feature auto-calibration via an integrated calibration source. This guarantees the accuracy and stability of measurements with our wavemeters. For the higher accuracies we offer a variety of frequency stabilized, narrow linewidth, laser sources with up to ±10 kHz frequency stability for different applications.

Specialized Application Wavemeters

HighFinesse/Ångstrom offers a number of highly specialized wavelength meters. Ultra-fast measurements, standalone devices, or customer specific modifications: we are always open to make your requirements possible!

Fastest Wavemeters

Our WS Fast series features ultra high speed measurement rates, the fastest commercially available!

Read out rates can be up to 24 kHz in the 330 – 1180 nm and even up to 76 kHz in the 980 – 1650 nm wavelength range. Fast swept laser sources can be precisely characterized with these wavemeters.

Measurement range					
Absolute accuracy					
Quick coupling accuracy					
Wavelength deviation sensitivity					
Live calculation speed 1)					
Measurement rate					
Minimum exposure time					
Maximum exposure time ²⁾					
Minimum required input energy and power					
Fizeau interferometers (Fine/Wide Mode)					
Calibration					
Recommended calibration period					
Warm-up time					
Dimensions					
Weight					
Interface					

380 – 1050 nm (QE > 60%)	980 – 1650 nm (QE > 60%)		
600	400		
6	00		
10	00		
30	000		
24000 Hz	76000 Hz		
41.6 μs	6 μs		
3.3 ms	9 ms		
7 μW / 0.29 nJ @ 532 nm	1 mW / 6 nJ @ 1532 nm		
16 GHz /	¹ 100 GHz		
Bui	lt-in		
1 m	onth		
30	min		
360 × 120	× 120 mm		
3.5	5 kg		
USB 2.0 and GbE	USB 2.0 and CL		
Extern	nal 12 V		

WS6 IR Fast

WS6 VIS Fast

1) Depends on PC and measurement mode 2) Depends on gain mode

OEM and customizations

While our standard housings are well suited for lab conditions there are cases where our devices are subjected to extreme conditions. For these instances we can work with the customer to design a housing suitable for their requirements. In the past these have included an increased protection from environmental influences and increased

shock resistance. Contact us for user defined functions or OEM applications!

Right:

Power supply

The unmatched accuracy of our wavemeters is used to actively stabilize the seed laser of a Laser Guide Star system. This guarantees that the yellow laser light is exactly on resonance with the atomic transition to enable the LGS to shine bright!

Standalone Wavemeter

HighFinesse/Ångstrom Wavelength Meters are also available in an industry standard 3U 19-inch rack-mount case, allowing easy integration into existing

rackmount systems. A standalone version allows full use of the device without needing a connection to a PC. Measurements can be recorded directly onto the device internal storage or externally. Store easily on USB flash drives, HDD/SSDs, or access the wavemeter via SCPI client. This modification is available for all wavelength meter models (except FAST series).

Features

- Wavelength Measurement
- Longterm Graph
- Relative Power Measurement
- Network: SCPI via Ethernet
- Linewidth Estimation (Option)
- External Trigger (Option)
- PID Laser Control (Option)
- Multichannel Switch (Option)

Spectrometer OSA

HighFinesse/Ångstrom optical spectrometers LSA and HDSA are designed to analyze the multiline or broadband spectrum of light sources like cw and pulsed lasers, gas discharge lamps, super luminescence diodes, semiconductor laser diodes and LEDs. They are suitable to analyze the spectrum of telecom signals, resolve Fabry-Perot modes of a gain chip, and produce a spectral measurement of gas absorption.

Precision Current Sources

HighFinesse Precision Current Sources have been developed for experiments and quantum technologies in the areas of cold-atom and solid state physics. The linearly regulated BCS (Bipolar Current Source) and UCS (Unipolar Current Source) series deliver highly stable, low noise source currents for high precision magnetic field control. The current output is floating or is on a used defined potential. Ultrafast response to control signals and trigger functions, clear grounding, connection and signal isolation schemes make the integration of the current sources into complex experimental systems easy.

Linewidth Analyzer

HighFinesse Linewidth Analyzers (LWA) are specialized high-end devices for measuring and analyzing the spectral shape of various laser sources. Through the use of two measurement modes, the LWA can analyze both very narrow laser lines down to 100kHz as well as broader spectra up to 1GHz. They feature an extremely high resolution and accuracy in determining the linewidth of the respective laser source and its spectral lineshape. The LWAs are ideal for optimizing the stability of laser setups.

HighFinesse GmbH Auf der Morgenstelle 14 D 72076 Tübingen/Germany

T +49 (0) 7071-968515 F +49 (0) 7071-968517 M info@highfinesse.cor

Additional information and distributors: www.highfinesse.com